Entropy–Copula in Hydrology and Climatology
نویسنده
چکیده
The entropy theory has been widely applied in hydrology for probability inference based on incomplete information and the principle of maximum entropy. Meanwhile, copulas have been extensively used for multivariate analysis and modeling the dependence structure between hydrologic and climatic variables. The underlying assumption of the principle of maximum entropy is that the entropy variables are mutually independent from each other. The principle of maximum entropy can be combined with the copula concept for describing the probability distribution function of multiple dependent variables and their dependence structure. Recently, efforts have beenmade to integrate the entropy and copula concepts (hereafter, entropy– copula) in various forms to take advantage of the strengths of both methods. Combining the two concepts provides new insight into the probability inference; however, limited studies have utilized the entropy–copula methods in hydrology and climatology. In this paper, the currently available entropy–copula models are reviewed and categorized into three main groups based on their model structures. Then, a simple numerical example is used to illustrate the formulation and implementation of each type of the entropy–copula model. The potential applications of entropy–copula models in hydrology and climatology are discussed. Finally, an example application to flood frequency analysis is presented.
منابع مشابه
Integrating Entropy and Copula Theories for Hydrologic Modeling and Analysis
Entropy is a measure of uncertainty and has been commonly used for various applications, including probability inferences in hydrology. Copula has been widely used for constructing joint distributions to model the dependence structure of multivariate hydrological random variables. Integration of entropy and copula theories provides new insights in hydrologic modeling and analysis, for which the...
متن کاملThe Structure of the Class of Maximum Tsallis-Havrda-Chavát Entropy Copulas
A maximum entropy copula is the copula associated with the joint distribution, with prescribed marginal distributions on [0, 1], which maximizes the Tsallis–Havrda–Chavát entropy with q = 2. We find necessary and sufficient conditions for each maximum entropy copula to be a copula in the class introduced in Rodríguez-Lallena and Úbeda-Flores (2004), and we also show that each copula in that cla...
متن کاملMutual information is copula entropy
In information theory, mutual information (MI) is a difference concept with entropy.[1] In this paper, we prove with copula [2] that they are essentially same – mutual information is also a kind of entropy, called copula entropy. Based on this insightful result, We propose a simple method for estimating mutual information. Copula is a theory on dependence and measurement of association.[2] Skla...
متن کاملCopula–entropy theory for multivariate stochastic modeling in water engineering
The copula–entropy theory combines the entropy theory and the copula theory. The entropy theory has been extensively applied to derive the most probable univariate distribution subject to specified constraints by applying the principle of maximum entropy. With the flexibility to model nonlinear dependence structure, parametric copulas (e.g., Archimedean, extreme value, meta-elliptical, etc.) ha...
متن کاملHESS Opinions “Climate, hydrology, energy, water: recognizing uncertainty and seeking sustainability”
Since 1990 extensive funds have been spent on research in climate change. Although Earth Sciences, including climatology and hydrology, have benefited significantly, progress has proved incommensurate with the effort and funds, perhaps because these disciplines were perceived as “tools” subservient to the needs of the cli5 mate change enterprise rather than autonomous sciences. At the same time...
متن کامل